
Shear Viscosity of the “semi”-QGP
1. Some possible deconfining phase transitions

2. Deconfinement at zero coupling: SU(∞) on a small sphere 
(Sundborg ‘99, Aharony et al ’03, ‘05)

3. Is the QCD coupling big at Tc?  Maybe not.

4. (Renormalized) Polyakov Loops & the semi-QGP

5. Shear viscosity of the semi-QGP

    For heavy ions, is LHC like RHIC? 

                          Strong-QGP, N = 4 SUSY: yes.  

                                      Semi-QGP, no.



1. Some possible deconfining transitions



Polyakov loops & deconfinement
Polyakov loop: order parameter for deconfinement, 
~ propagator of infinitely heavy quark

Ordinary magnetization:
     <s> ≠ 0 at low T,  <s> = 0 at high T =>

Deconfinement: Polyakov loop “flipped”,
Global Z(N) symmetry: 
      broken at high T,  restored at low T.

Classify possible deconfining transitions by change in <loop>.  

Assume overall normalization of loop physical: 

Quarks act like background Z(N) field.
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Logically possible, does not appear to arise in any context.  (Lattice, analytical...)
General expectation before RHIC.

One possibility
Transition from confined phase to “complete” Quark-Gluon Plasma (QGP)
Complete QGP: loop near 1, ≈ perturbative.
Transition strongly first order.  Effect of quarks weak.

confined “complete” QGP



1.→

〈!〉 ↑

Tc ?
T→

Another possibility
Many quarks, strong background field.
Loop increases gradually, probably no deconfining phase transition.  

Probably true for large number of flavors, completely wash out deconfinement.
Probably no chiral transition either.



QCD?

〈!〉 ↑

1.→

Tc↑
T→

 Hadronic →←     “semi”-QGP     →←Complete QGP→   

Even with dynamical quarks, three regimes:
Hadronic, <loop> ~ 0.  

“Semi”-QGP: <loop> nonzero, but not near one.  

Complete QGP: <loop> near one.  Usual “perturbative” regime (resummed!)



N = 4 SU(∞)
AdS/CFT: Can define <loop> = 1 at T = 0 (Polyakov-Maldacena, + scalars)

At T ≠ 0 , <loop> = constant (like pressure/T4) : value, vs g2 N?  

N = 4 SU(∞) is always deconfined.

×
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2. Deconfinement at zero coupling:
 SU(∞) on a small sphere



SU(∞) on a small sphere: Hagedorn temperature
Sundborg, hep-th/9908001
AMMPV: Aharony, Marsano, Minwalla, Papadodimas, & Van Raamsdonk,
                                                                                                   hep-th/0310285 & 0502149 

Consider SU(N) on a very small sphere: radius R, with g2(R) << 1.
(Sphere because constant modes simple, spherically symmetric)

At N = ∞, can have a phase transition even in a finite volume.  

When g2 = 0: by counting gauge singlets, find a Hagedorn temperature, TH :

ρ(E) ∼ exp(E/TH) , E → ∞

At N = ∞,  Hagedorn temperature is precisely defined. When g2 = 0,

TH =
1

log(2 +
√

3)

1

R
, g2 = 0.



SU(∞) on a small sphere: effective theory
Construct effective theory for low energy (constant) modes, 

by integrating out high energy modes, with momenta ~ 1/R:

Consider (thermal) Wilson line:

L is gauge dependent, 

Traces of moments gauge invariant, 

!j =
1

N
tr L

j , j = 1 . . . (N − 1)

Effective theory for lj: compute free energy in constant background A0 field:
Q = diagonal matrix.

L → Ω(1/T )† L Ω(0)

L = P exp
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SU(∞) on a small sphere & the Polyakov loop
When g2 = 0:

At the Hagedorn temperature, TH , only the first mode, l1, is unstable; all other 
modes are stable.  Concentrate on that mode, l ≡ l1.

Vandermonde determinant in measure for constant mode gives “Vdm potential”:
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2
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2
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1
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Vdm potential has discontinuity of third order at l = 1/2.
Gross & Witten ’81; Kogut, Snow & Stone ’82....
Sundborg, ’99....AMMPV ’03 & ‘05
Dumitru, Hatta, Lenaghan, Orginos & RDP, hep-th/0311223 = DHLOP
Dumitru, Lenaghan & RDP, hep-ph/0410294.
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Deconfinement on a small sphere

Deconfining phase transition when m2 = 0: first order, < l > = 1/2 at Tc = TH.
Obvious from potentials above and below Tc:

m2 = -.1, deconfined phase =>

<= m2 = +.1, confined phase



Gross-Witten point

At transition, order parameter <loop> jumps from 0 to 1/2.  Latent heat nonzero.
DLP: masses vanish, asymmetrically: “critical” 1st order transition: “GW point”.
At m2 = 0, <loop> jumps because of 3rd order discontinuity in Vdm potential
GW point like tricritical point in extended phase diagram.
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1→

T→
Tc↑

〈!〉 ↑ 1/2→

←  Confined   →←    semi-QGP →←Complete QGP→   
Semi-QGP on a small sphere

Veff = Veff (g2 = 0) − c3 g4
(

!2
)2

c3 > 0.

c3 > 0 ⇒  Tc = TH - O(g4).  Deconfinement first order, below TH 

Boundary between complete & semi-QGP not precise; <loop>  → 1 by T ~ # Tc?  

AMMPV ‘05: calculate free energy with Q ≠ 0 to two loop order at small R



3. Is αs  big at Tc?  Maybe not.
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 Maybe αs is not so big at Tc

Laine & Schröder, hep-ph/0503061 & 0603048

Tc ~ ΛMS ~ 200 MeV.  But αseff(T) ~ αseff(2 π T) ~ 0.3 at  Tc: not so big

Two loop calculation: grey band uncertainty from changing scale by factor 2.
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Perturbative resummation of the pressure

p/T4↑

←ideal gas

“Helsinki” resummation: Di Renzo, Laine, Schröder, Torrero, 0808.0557

Now to 4 loop, ~ g6.  Works to ~ 3 Tc, fails below. 
Why, if αseff(Tc) is not so big?    Perhaps a semi-QGP near Tc?
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trG
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2
D trA

2
0 + κ trA

4
0

Grey: resummed 
          pert.theory.  
Red: lattice.



4. (Renormalized) Polyakov loops & the semi-QGP



Renormalized loops
Polyakov ’80, Dotsenko & Vergeles ‘81...DHLOP ’03...
Gupta, Hubner & Kaczmarek 0711.2251 = GHK

Bare loop UV divergent.  At one loop  =>
Like mass ren. of heavy quark.  In 3+1 dim.’s, linear div.
Vanishes with dimensional regularization, but not on the lattice:

Loop in representation R, Casimir CR.  
1/(a T) = # time steps, Nt.  Renormalized loop:

Can choose

GHK: find approximate Casimir scaling:
Like cusp anomalous dimension. ZR(g2) ≈ Z(g2)CR

!bare
R = ZR(g2)Nt !renR

〈!〉 → 1 , T → ∞

〈!R〉 − 1 ∼ #
CRg2

T

∫ 1/a d3k

k2
= #

(

CR g2 + #′g4 + . . .
) 1

aT



Lattice: renormalized loop, c/o quarks
GHK:  Lattice SU(3), no quarks.  Two ways of getting ren’d loop agree.
<triplet loop> ~ 1/2 at Tc+!  N=3 close to Gross-Witten point?
<adjoint loop> ~ 0.01 just below Tc . Only natural in matrix model.
semi-QGP: from (exactly) Tc+ to 2 - 4 Tc (?).   <loop> ~ constant above 4 Tc.
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 Lattice: renormalized loop, with quarks
Cheng et al, 0710.0354: ~ QCD, 2+1 flavors.  Tc ~ 190 MeV, crossover.
<loop>: nonzero from ~ 0.8 Tc; ~ 0.3 at Tc; ~ 1.0 at 2 Tc.
Semi-QGP from ~ 0.8 Tc (below Tc) to ~ 2-3 Tc (?). <loop> small at Tc .
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4. Shear viscosity of the semi-QGP



 Semi-QGP in weak coupling
Y. Hidaka & RDP 0803.0453.  Semi-classical expansion of the semi-QGP:

Aµ = Acl
µ + Bµ , Acl

0 = Q/g .

Q ≠ 0: just like semi-classical calc. of ‘t Hooft loop.  Q = Qa , diagonal matrix.
Work at large N, large Nf, use double line notation.  (Finite N ok, messy.)

iDcl
0 = p0 + Qa

= pa

0

iDcl
0 = p0 + Qa

− Qb
= pab

0

Perturbation theory in Bμ’s same as Q = 0, but with “shifted” p0’s.
Amplitudes in real time: p0a → i ω, etc.  Furuuchi, hep-th/0510056

Q (imaginary) chemical potential 
for (diagonal) color charge.
e.g., for quarks:

ñ(E − iQa) =
1

e(E−iQa)/T + 1

a

a
b



 How color evaporates in the semi-QGP
AMMPV: simple trick.  

L = ei Q/T = Wilson line.  Obtain expressions in terms of moments of L, Lj.  

We don’t know (yet) effective theory for Q’s. So we guess.

Take first moment, l = <loop> = < tr L>/N, from lattice for N = 3.
For higher moments, given l, assume either: 1. Gross-Witten, or 2. step function.

L ~ propagator of infinitely heavy (test) quark.
In this semi-cl. expansion, for colored fields of any momentum and mass,
As l→0, all quarks suppressed ~ l ; all gluons, ~ l2 : universal color evaporation

Smells right: all colored fields should evaporate as <loop> → 0.

tr
1

e(E−iQa)/T
− 1

= tr

∞∑

j=1

e
−j(E−iQa)/T

=

∞∑

j=1

e
−jE/T

tr L
j



 Shear viscosity in the semi-QGP

η

T 3
=

#

g4 log(c/g)
R(") ; R(" → 0) ∼ "2

Shear viscosity, η, in the complete QGP:
Arnold, Moore & Yaffe, hep-ph/0010177 & 0302165 = AMY.
Generalize to Q ≠ 0: Boltzmann equation in background field.

                  

“Strong” QGP, large coupling   S ~ 1, C ~ (coupling)2 >> 1.
  N = 4 SU(N), g2 N = N = ∞: η/s = 1/4π .  Kovtun, Son & Starinets hep-th/0405231

“Semi” QGP: small loop at moderate coupling:
                       Pure glue: S ~ <loop>2, C ~ g4 <loop>2

                       With quarks: S ~ <loop>, C ~ g4

To leading log order: # from AMY, constant “c” beyond leading log

η =

S2

C
S = source, C = collision term.  Two ways of getting small η:

Both: η ~ <loop>2



 Counting powers of <loop> = l → 0

X
S ∼ !

X
S ∼ !

2

∼ e
+iQa/T

∼ e
−iQa/T

C ∼ !
2

C ∼ 1



 Small shear viscosity from color evaporation
R = ratio of shear viscosity in semi-QGP/complete-QGP at same g, T.
Two different eigenvalue distributions give very similar results!

When <loop> ~ 0.3, R ~ 0.3.

! →

R(!) ↑

∼ !
2
→

←Cusp near 1:
smoothed out
by Q ~ g T?

Nf = 0 →

← Nf = N



 Shear viscosity/entropy
Leading log shear viscosity/lattice entropy.  αs(Tc) ~ 0.3.
Large increase from Tc to 2 Tc.  Clearly need results beyond leading log.  
Also need to include: quarks and gluons below Tc, hadrons above Tc.  Not easy.

0.8
←

1

4π
 0

 1

 2

 3

 4

 5

 6

 1  1.5  2

c = 4

η/
s l

a
t

0

c = 8

c = 16

c = 64
c = 32

Tc

5.0

T/Tc→1 1.5 2.0

η

slat

↑

1.0

2.0



Strong- vs. Semi-QGP at the LHC

η/s ↑ He

N2

H2O

RHIC?→
Tc↑ 2 Tc↑

Lacey, Ajitnand, Alexander, Chung, 
Holzman, Issah, Taranenko, 
Danielewicz & Stocker, 
nucl-ex/0609025  ↓

At RHIC,  η/s ~ 0.1 ± 0.1
Luzum & Romatschke, 0804.4015

Close to N = 4 SU(∞), η/s =1/(4 π).

Strong-QGP: in N = 4 SU(∞),
add scalar potential to fit lattice pressure
But η/s remains = 1/4π !
Evans & Threlfall, 0805.0956
Gubser & Nellore, 0804.0434
Gursoy, Kiritsis, Mazzanti & Nitti 0804.0899
So LHC nearly ideal, like RHIC.

Semi-QGP, and non-relativistic systems →
Large change in η/s from Tc to 2 Tc.
At early times, LHC viscous,
                         unlike RHIC



Zero point energy & renormalized loops
Renormalization valid for arbitrary Wilson loops:

W = tr P e
ig

∮
Aµdxµ

; Wbare = Zdiv Wren

Two ambiguities:

Zdiv = eE0L
Z0 Z(g2

. . .)L/a ; Wren → e−E0L
Z

−1

0 Wren

Overall scale trivial: Z0  = 1 by requiring <loop> → 1 as T →∞.

E0 = ground state energy for potential from Wilson loop:  E0 = # √σ.  # ?
Can define E0 = 0 order by order in perturbation theory with any regulator.
     E0 = 0 also in string model: Nambu-Goto plus extrinsic curvature terms...

Lattice provides non-perturbative way to define E0 = 0.  
Is E0 = 0 a choice, or new condition for renormalizing non-local operators?

T = 0 potential with dynamical quarks: can define energy for string breaking.


